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A scaling theory is used to derive the dependence of the average nkhbéspanning clusters at threshold
on the lattice sizé.. This number should become independent.dbr dimensionsd<6 and vary as Ih at
d=6. The predictions fod > 6 depend on the boundary conditions, and the results there may vary bétféen
andL®. While simulations in six dimensions are consistent with this predidédier including corrections of
order InIn L)], in five dimensions the average number of spanning clusters still increaset asén up to
L=201. However, the histogram(k) of the spanning cluster multiplicity does scale as a functioRX{L),
with X(L)=1+constL, indicating that for sufficiently large the averagék) will approach a finite value: a fit
of the five-dimensional multiplicity data with a constant plus a simple linear correction to scaling reproduces
the data very well. Numerical simulations fd=>6 and ford=4 are also presented.
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I. INTRODUCTION AND THEORY Pspan(pvl—) =p- E sn(p,L), (1)
s

We are interested in site percolation on a finite hypercubic

lattice ind dimensions, of linear size. The number of span- .

ning clusters wherh_ is of the order of the percolation cor- Where the sum oves excludes all clusters which span the
relation lengthé away from the percolation threshopd was ~ lattice. The exact details depend on the definition of
discussed originally in Refl]. The purpose of this paper is ‘SPanning'—e.g. along how many directions should the
to discuss the average number of spanning clustgfsat  cluster connect opposite faces of the hypercube. However,
p=p., when¢ is infinite, and all the critical quantities behave hese details do not matter for the scaling arguments pre-

as powers of.. As we discuss below, the number of spanningSented below. _

clusters has been the topic of much discussion in the litera- FOr @ finite lattice, the sum in Eq1) goes up tGnafL),
ture. For example, although intuitively one would think that Which is of the same order as the average mass of a single
in two dimensions there exists only one spanning cluster, ii§Panning clusters(L). Since the total mass @fll spanning
fact (for appropriate boundary conditionthere is a whole ~clusters is given byL%Pg,, this implies that the average
distribution of the sizes of such clustd. In addition, we  humber(k) of spanning clusters is given by

show below that fod<6 the average number of such clus-

ters is finite, in direct relation with the validity of the hyper- d

scaling relations among critical exponents. o6 hyper- (k) o L Pspads(L). 2)
scaling is violated, dangerous irrelevant variables must be

introduced, and the result fdk) becomes ambiguous, de- This relation should hold at all dimensions. The proportion-
pending on the boundary conditions. In fact, the theory forality constant in Eq(2) (which results, among other things,
that case is yet incomplete, leaving an open challenge fdirom dividing averages rather than averaging the ratio and on
future research. the detailed definition of “spanning” in a finite sampteay

We start with a theoretical discussion. The percolationdepend on the boundary conditions and on other details.
“order parameterPsg,,is usually defined as the probability =~ One way to derives(L) is to use the pair connectivity
that a site belongs tany spanning clustefi.e., to the union  function, G(r). This function yields the probability that a site
of all spanning clusteysFor a finite samplePsp,nis related  at distance from the origin is connected to the same cluster
to the cluster size distribution functiom(p,L) (defined as as the origin. Assuming that the site at the origin belongs to
the average number per site of clusters contaisiaiges via  any spanning cluster, with probabilif,,, the density pro-
the sum rulg3] file of the cluster is given by(r)=G(r)/Pgpan [4,5]. Thus,
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(These two quantities are equal in the thermodynamic limit,
L —oe.) Thus, we come to the fundamental relation °,

(K) o LIPZ,{S(L). 0
A naive finite-size scaling theory would predict that at
p=p, one haPy, LA andS(L) e L”” [3]. Thus, one con-
cludes that

10
L

FIG. 1. Average numbek) of simultaneously spanning clusters
at the six-dimensional percolation threshold, for FBCY and
MBC's (+) (see text The lines are fits tgk)=A In(L)+B In(InL);
we used the data of Rd8] plus additional simulations for smadll

(K) o Ld-(2B+ v (5) with the number of samples variable from 1000 to 50 000.

For d<6, hyperscaling implies thadv=28+1v, and there-
fore (k) is asymptotically independent &f In fact, the com-

bination of amplitudes which appears in Kg) is universal,
depending only on the type of boundary conditigfs As

(K) oc L96. (8)

This simple result, which already appeared in R&f, has

also been proved by Aizenmaj2] for the case of bulk

we discuss below, numerical estimates {& indeed ap- boundary conditions, where a spanning cluster connects two
proach a constant fai<4. However, data fod=5 require  Opposite faces of the box of sizeunder the condition that
further discussion. Although not a major purpose of this paSites in the box can also be connected by paths outside the
per, our discussion below should also serve as a warning arfPx-

as a guideline for future numerical simulations in such high However, other forms of scaling may be possible, which
dimensions. In fact, some data remain ambiguous unless origdy depend on the boundary conditions. We will discuss the
uses available theoretical information or unless one performdifferent scaling approaches within the framework of the
simulations on much larger scales than presently possible. renormalization group(RG) theory (e.g., Ref.[7]). This

At d=6, many power laws are modified by logarithmic theory is conveniently discussed using the “free eneifgy”
corrections. In facf7], equal to the generating function of the cluster distribution

function,
Pspan“ L—Z(In L)11/21,

F(p.hL) =2 ny(p,L)e™", (©)
S(L) o L2(In L)Y2L, (6) s
. . . which is related to the free energy of thestate Potts model
Using our basic result, Eq4), we thus find for g—1. ThenPg,,,and S(L) are the first and second de-
Lop? rivatives of the singular part df with respect toh. After ¢
(k) o —p—i Focinl, d=6. (7)  RG iterations, this singular part becomes

Further analysis shows that the coefficient of proportionality f(p,hw,L) = eF(1(6), h(6), w(6), LI, (10
here (and also the result fotk) for d<<6) is a universal wheret=p-p.. Here,w represents the probability for having
number [6]. Corrections to the above result will involve a threefold vertex at a site on a cluster. Although irrelevant in
In(In L+cons}. Figure 1 shows that the data in six dimen- the RG sense, this variable must be included in the analysis,
sions, which were fitted by the square oflliin Ref.[8], can  since the “free energy” may depend on it in a singular way,
also be fitted to a simple logarithm plus a Indrcorrection  causing the breakdown of hyperscaling. This is wiyis
to scaling,(k)=AInL+BInInL+---. The two data sets re- called “a dangerous irrelevant variable.” For a finite sample
fer, respectively, to free boundary conditiofiBC's) and to  close top,, L<¢, iteration untile‘=L vyields theL depen-
mixed boundariegMBC’s)—i.e., helical ind—2 directions dence of the quantities discussed above.
and free in the remaining two. In both cases we obtain a Ford<6, w({) approaches a finite fixed-point value, and
good fit forL>10, so that the trend appears independent obne ends up with hyperscaling and with the conclusionkhat
boundary conditions, as one would expect. The coefficientapproaches a finite constant. Fbr 6, one ends up with
(éf £26331:|('[|§B?:58A 11.9, B 17 (MBC) and A=2.38, f(t,h,W,L):L_df(th,hLd/2+1,WL3_d/2,l). (ll)

For d>6, hyperscaling is broken, and one has the meanHowever, as stated above, nawturns out to be a “danger-
field exponentg3=y=2v=1. A simple scaling in whicl§ is  ous irrelevant variable.” One way to see this is to consider

replaced by L [1] would give PgpcL™2 S(L)ecL?,
s(L) = L4 and

the infinite sample. After eliminating the fluctuatiorfs,is
given by the minimum of the Landau free energy,
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FIG. 2. Effective exponents for the scaling withof the span-
ning cluster multiplicity(from Ref.[8]), as a function of the spatial

L

FIG. 3. Numerical verification of our relation, Eg), for five-
dimensional5D) percolation with MBC's.

dimensiond. The dashed line represents the theoretical prediction

from Eq. (8).

f = min[tP?+wP®-hP],
P

while the order paramete®,, is equal to the value oP
which minimizes this free energy. Replacifigby Qw 13,
with an arbitrary exponeny, it is easy to see thdtobeys the

scaling relation

between theory and simulations. However, these discrepan-
cies do not worry us much since the lattices tbr6 are
very small in their linear dimensioh. This is confirmed by

the fact that, ford> 6, the results for the exponents strongly
depend on the type of boundary conditions one chooses.
Also, our attempts to add corrections to scaling to the leading
term of the fit ansatz did not improve the situation. At
present, the numerical results cannot clearly confirm that
x=0, as would be required if Aizenmamng] result also ap-

f(t,h,w) = w2 (tw ™3 hwt=273 1), (13)  plies for our boundary condition®ote that his proof works
under somewhat different conditionsThus, the value ok
remains to be determined in the future.

A second possibly relevant casexis2. In this casef has
the form

f(t,h,w,L) = LAWY hwPL298% 1,1, (17)

In particular, the minimization with respect €@ now yields
the equation @2+ 2Qtw™3—hw!~23=0, |eading to the scal-
ing form

f(t,h,w) = w2t3g(hwit?), (14)

which is completely independent of the arbitrary exponent . . _ .
This ambiguity stems from the fact that the Landau free eny'e'dlng D=2d/3 andPspanand S given by

ergy is calculated for an infinite system. Pgpan= L 31 (w23L93), (18)
Unlike the above result for the infinite system, the expo-
nentx does persist fofinite samples. In fact, the theoretical S= L93f,(w23L93), (19)

predictions fork) depend crucially o, and this remains an o _
open challenge for future research. In this case, combinin§ the limitst—0, L—, these equations behave as

th_(;,\hscaling withL from Eg. (11) with Eq. (13), we end up Pepan® Slateg? L=o, (20)
wi
f(t,h,w,L) = w2 ~6+3dx2 Pspan* St L™¥3, (k) const, t=0, (21)
X f(tW—xISLZ—x+dxl6’ hW‘l_2X/3L4_ZX+dX/3, 1, l) , and
(15) Pspanoc S—l o L—y, <k> o Ld—3y,

and the value ok must follow from the boundary condition, y
which breaks the scale invariance reflected in Ed). Tak- tLY=const<0, y=d/3. (22

ing derivatives with respect toand setting=0, this implies (Remember that these equations only applydor6.) The
that scaling behavior of Eqg20)«22) for y=2 is analogous to

o | ~2+x-dx/6 that found by Chen and Dohif®] for the ¢* Ising model
Pspan L ' . - o
with periodic boundary conditions and has recently been
Soc [ 2x+dXN6 used to find an upper bound for the number of spanning

S(L) o L4_2X+dXI3.

The naive scaling result of Eq8) is obtained with the

simple choicex=0.

Figure 2 compares E@8) with the numerically estimated

clusters[8]. As seen from Fig. 2, our data fa=0 do not
seem to agree with the prediction tH&} approaches a finite
constant. However, our samples are small, and the situation
for d>6 requires more studies. Very recent simulations show
that P4, differs appreciably from the relative size of the
largest clustef10], but that is not enough to conclude that

effective exponents. Clearly, there exist some discrepancigle spanning cluster multiplicity diverges for>6. Thus, the

056116-3



FORTUNATO et al.

0.08

0.07
0.06
0.05
0.04 |
0.03

L'P? /(S <i>)

0.02
0.01 |

0

6

FIG. 4. As Fig. 3, but for 7D percolation with FBC's.

true behavior ofk) for d> 6 remains an open issue. We hope
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FIG. 6. Five-dimensional data of the spanning cluster multiplic-
ity at threshold for FBC'S(+) and PBC’s(x). One still finds an

increase withL, although for PBC's it seems that the data curve
starts bending at high. The number of samples goes from 3000 to

that the present paper will stimulate both numerical and theg 500 for FBC’s and from 10 000 to 50 000 for PBC's.
oretical discussions of this question.

Il. RESULTS OF THE SIMULATIONS

We now review in detail our numerical simulations. The

than the one we show in Figs. 3 and 4. On the other hand, the
functional dependence dn of the ratio is the same in both

cases.

Let us now concentrate on the trend of the multiplicity

ﬁrst numerica' Studies on th|s topic were performed by dé/yhen the Iin.ea.r dimensim of the |attice VariQS. In |eSS than
five dimensions, Ref{8] found an asymptotically constant

Arcangelis[11].

An important issue concerns the validity of our K4),

number of spanning clusters for both theory and simulation.

which is a general result that establishes a link between th&hus the real problem is five dimensions, which we discuss

order parametePs,, the mean cluster siz8 and the span-
ning cluster multiplicity(k). Figures 3 and 4 show numerical

now.

Figure 5 shows new data fdr® sites, extending up to

tests of this relation. We analyzed one case below the uppér=201, the largest five-dimensional system known to us

critical dimensiond.=6—i.e., 5D with MBC's—and one

from direct simulationg176® was simulated in Ising models

case abovel—i.e., 7D with FBC’s. In both cases we have [12]). They are still compatible with the number of spanning

calculated the ratidldpgpa,/(&k)). From our equatioii4) we
expect that folL large this ratio converges to a constant, an
both our figures confirm this expectation. We stress thaSthe
that we calculate through our simulations differs from the
standard definition 08=2.’ng(p,L)/=sn, by the absence

of the denominator. The latter is smaller than 1, as it is theend, which might indicate the beginning of a crossover.

For comparison, Fig. 7 shows four-dimensional simula-
tions with MBC's. There we see for smdll< 12 a logarith-

density of occupied sites which belongs to finite clusters, so
the real value of the ratidldnga,{(S(k)) would be smaller

4
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clusters increasing as In These data use MBC's, but simi-
dIar proportionalities to I were found also with free and
periodic boundary condition€PBC’s, which means helical
boundaries ird—1 directions, which are illustrated in Fig. 6.
By looking at the data corresponding to periodic boundaries,
however, it seems that the curve smoothly bends towards the

mic increase, followed by a crossover region extending over
one decade il and ending finally in the theoretically pre-
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FIG. 5. Five-dimensional problem, MBC’s. The rightmost error
bar forL=201 comes from 10 samples, the two smaller error bars
shown from 100 samples. Most of the data use 1000 samples with FIG. 7. Four-dimensional solution, MBC's. The spanning cluster
error bars too small to be shown. There is no evidence for a plateaumultiplicity increases in a wide range &f, but attains finally a
nevertheless, the trend of the data is beautifully reproduced just bglateau forL>100. The dashed curve is the fit with the simple

adding a simple nonlogarithmic scaling correcti@ashed line in

the plod.

05

10

1000 samples.
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dicted plateau nedr=200. Further simulations with PBC’s 1000 =
(not shown confirm this trend. These four-dimensional re- - b
sults are a nice example for the need of large lattices in 100 | ~
simulations: only above.=100 is the theory confirmed. )
; ; C S
Comparing Figs. 5 and 7 we may hope that also in five I ol -
dimensions a crossover would be seen towards a plateau, if X T
we could simulate larger lattices than present world records &
[13]. T
There is a way, however, to clarify the issue. Instead of e
looking merely at the average numbép of spanning clus- 0.1 ‘ -
ters(as in all of the above discussiprwe can analyze the o v 2 » +432/L) £ 56

histogramP(k) of that number. Its tail for largk was already
shown to be consistent with theorjl4]: —In P(k— <) FIG. 8. Four-dimensional histogram, MBC's. Occurrence
«k¥@D for 2<d=<7. If (k) were size independent, on a P(k,L) of samples wittk spanning clusters each, verdyswith the
lattice of linear dimensior. we would also expecP(k,L) finite-size correction factor 1+4.2/derived from the fit of the
=P(k); i.e., the histogram is as well size independent. Finite-2verage multiplicity. The data sets have a variable number of
size scaling for largé. would nevertheless allow correction S2mPples, mostly 50 000; we normalized them all to 1000 iterations.
factors likeX(L)=1+constL, so that the histogram is indeed The nice sca'lln.g. is con3|st§nt with the size independence of the
a functionP(kX(L)). On the other hand?(kX(L)) is normal- g\éfr?gf mﬂt'ggc'ty' The lattices we have taken aré, 20, 40,

ized to somelL-independent numbe (we chose here P an '

C=1000, and therefore nitely many spanning clusters in the linhit— oc: if, for all L,

* there were a finité* beyond which the histograms collapse,
> P(kX(L)) =C. (23 (k) would necessarily approach a constant for laige
k=0 modulo finite-size corrections.
If we approximate the sum with the integral oderwe can ~ We tried then to fit the multiplicity curves in four and five
perform the change of variabjekX(L), so to get dimensions with the simple two-parameter ansaiiz/

(L+b), to see whether we could reproduce the observed
1 = ) trends. As a first trial we took the four-dimensional data of
EZ P(j)=C. (24)  Fig. 7 and fitted several portions of the increasing part of the
1=0 curve, before the plateau. All our fits are quite good; besides,
Equation(24) cannot be right as it stands, because the leftStarting from the rangf2:60], the fit is stable; i.e., we obtain
hand side is a function df, while the right-hand side is not. the same values for the parametarandb as for the fit on
That means that the histograftk,L) is not a scaling func- the full curve, within errors. This is quite interesting, because
tion of the variable j=kX(L), but that P(k,L) it allows us to predict quite precisely where saturation takes
=X(L)P’ (kX(L)), whereP’ is now[15] a scaling function of place, even if one analyzes vaIuesLoWhlch lie well below _
j. Let us check what happens to the average multipligy the beginning of the plateau. The best fit curve, for which

if we assume thaP(k,L) has the above-derived form: a=0.78 andb:4‘2.’ Is p!otted in .Fig. ’ N
As a nice confirmation of this result, we show in Fig. 8
D KXLP'(RXL) ¢

w the corresponding histogranB(k,L), where we use the
- - SiP(j), (25 value b=4.2 derived above for the scaling correction. We
2::0 X(L)P'(kX(L)) CX(L)j= ' chose again on purpose only valueﬂ_djgfore thg plateau of
the average multiplicity. The figure gives a nice data col-

where we again made the substitutiprkX(L) in the sum lapse, as we expected.

K

over k. The sum in Eq(25) is independent of., and we We repeated the analysis for the five-dimensional data,
finally obtain starting from the puzzling curve of Fig. 5. Here we find that
the fits are very good and stable starting from the very be-

(K o 1 (26) ginning of the curve: the fit parameteaisandb are basically

X(L)’ fixed already in the rangg:20]; the best fit(dashed line in

... . the figurg was obtained including all data points with sig-
so that the wholé dependence of the average multiplicity is pificant statistics—i.e., for 2L <91, we obtaina=3.126),
contained in the correction factoi(L). b=17.57). As one can see in Fig. 5, our simple ansatz

In this way, we have now the chance to make a Crosgyashed ling describes very well the observed behavior of
check on our, data. Itk) is indeed size independent for yho qata We notice that on the logarithmic scale foour
d<#6, we should be able to find a simple nonlogarithmicgimple scaling curve has an inflection point, exactly as the
correction factorX(L)=1+constL, such that(k)=1/X(L)  gata. This inflection can be interpreted as a signal of a pos-
and consistentlyP(k,L)/X(L) is a scaling function of the sible crossover from an initial logarithmic increase of the
variablej=kX(L). We remark that only eventual discrepan- multiplicity to a successive convergence to a plateau; we
cies of the rescaled histograms at latgean lead to infi- now see that it is instead a natural feature of our scaling

056116-5



FORTUNATO et al.

PHYSICAL REVIEW E 70, 056116(2004)

1000 ¢ 1000 ¢
o
[ o }’«E‘ - [ poxx R o, .
100 | ", 100 Fa ox o
s i N 5
~ 8
T 10 » = 10g -
5 ax = o ox
% o o
1F . 1k
e
01 L ) X X ) ) 01 L . . . .
0 2 4 6 8 10 0 2 4 6 10 12

K(1+417.5/L)

k(1+20/L)

FIG. 9. Same as Fig. 8, for five-dimensional data with MBC's. ~ FIG. 11. Same as Fig. 9, but with PBC. The scaling is remark-
One obtains again a very good Sca”ng of the Spanning cluster muﬁ.ble, probably due to the better statistics; the necessary correction is
tiplicity distributions fork>0 by introducing the simple correction 1+20/L. The lattices are 30 4C°, 5(°, 6(°, 7(°, and 80. The
1+17.5L. The lattices are 3040, 5(, 6P, 70°, 80°, and 98. The ~ number of samples goes from 8000 to 50 000.
number of samples goes from 1000 to 50 000.

. . . . We also checked for five dimensions whether other per-
ansatz. Notice that the correction term is more Importantcolat'on antities behave unusually and found that thev do
than in four dimensiongl7.5 vs 4.2. That means that the lon quantit Ve unusually 4 y

data converge much more slowly to the plateau and explainQOt' The size of the largest cluster at the percolation thresh-

why we could not see a saturation everlat201 (although O,Id variejy asymptotically ak™#"” and the “mean” cluster
the argument can be revergethdeed, for a giverL, the ~ S1Z€ @sL””, wheres/v=1.46, y/v=2.07 are expecte{B]

ratio r of the multiplicity to the asymptotic plateau is N five dimensions. We found that corrections to scaling play
r=L/(L+b). In 4D, r=96% for L=100 andr=98% for an important role in this range &f (from 10 to 80; all our
L=200; in 5D, one would obtain 85% and 92%, respectivelyfitting curves include a correction term, for which we fixed
In order to “see” the plateau as we do in four dimensions, wdhe value of the exponeat to the estimate 0.53 given in Ref.
would need to go td. ~800. To check the consistency of the [16]. Taking into account this correction, the finite-size scal-
picture in 5D we studied the scaling of the histogramsing fits are remarkable for all percolation variables if we use
P(k,L), with the correction constarit=17.5 that we deter- the PBC data, for which we ge{3/»=1.452) and
mined above. The result is illustrated in Fig. 9; the scaling isy/ v=2.082). For MBC’s the fits are also very good, but a
quite good, except eventually fée=0 (but scaling laws sel- bit worse as far as thg? and the values of the exponents are
dom hold for small integeysand at the very end of the tail, concernedp/v=1.452), y/v=2.102)]; for the FBC’s the
where the statistics is too low and there are relevant fluctudfits are not so good and the values of the exponents not in
tions of the data points. agreement with expectations, though quite close. Also series
Finally, we analyzed the two other data sets in fiveexpansions[16], which are independent of any lattice
dimensions—i.e., the ones relative to FBC’s and PBC'’s. Irsize, gave in five dimensions the usual exponents in agree-
both cases we found that our picture works: we could find anent with expectations, without indications of particular
scaling correctiorX(L) =1 +constL such that both the aver- difficulties.
age multiplicity and the histograms show a clean scaling.
The histograms are shown in Figs. 10 and 11; the scaling is
again very good fok> 0, with some fluctuations at the end
of the tail which are likely due to the low statistics of those
points.

IIl. CONCLUSIONS

In summary, we have derived the scaling behavior at
threshold of the average numbék) of spanning clusters
with the linear dimensioi. of the lattice, for any space di-
1000 g ' ' ' ' - mensiond. Below the upper critical dimensiod.=6, (k)

s should approach a constant whien- o, for d=6 it should

100 | % increase as Ih, and ford>6 it could increase ak®®, but
could also approach a constgdepending on boundary con-
= ] ditions and yet unknown theoretical detailgvhile the latter
conclusions might seem just a confirmation of previous re-
sults on the topic, our work highlights two new important
issues:(i) the possibility of other scaling behaviors @)

=, above the upper critical dimension, which possibly depend
01 . . . : ; on the boundary conditions argi) the relevance of correc-
tions to scaling, which may affect the scaling behaviors up to
two-three orders of magnitude In

Our numerical investigations confirm that the multiplicity
indeed converges to a constant tb 6. For the casel=5,
where we do not see a plateau even for the largest have

P)/(1+4/L)
>

K(1+41L)

FIG. 10. Same as Fig. 9, but with FBC’s. The correction is
1+4/L, the lattices are 2030, 40P, 5(°, 6(°, and 78. The number
of samples goes from 3000 to 50 000.
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