
Number of spanning clusters at the high-dimensional percolation thresholds

Santo Fortunato
Fakultät für Physik, Universität Bielefeld, D-33501 Bielefeld, Germany

Amnon Aharony
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel

and Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel

Antonio Coniglio
Dipartimento di Scienze Fisiche, Università di Napoli “Federico II” and Unitá INFM-Coherentia, Via Cintia, I-80126 Naples, Italy

Dietrich Stauffer
Institute for Theoretical Physics, Cologne University, D-50923 Köln, Germany

(Received 11 July 2004; published 18 November 2004)

A scaling theory is used to derive the dependence of the average numberkkl of spanning clusters at threshold
on the lattice sizeL. This number should become independent ofL for dimensionsd,6 and vary as lnL at
d=6. The predictions ford.6 depend on the boundary conditions, and the results there may vary betweenLd−6

andL0. While simulations in six dimensions are consistent with this prediction[after including corrections of
order lnsln Ld], in five dimensions the average number of spanning clusters still increases as lnL even up to
L=201. However, the histogramPskd of the spanning cluster multiplicity does scale as a function ofkXsLd,
with XsLd=1+const/L, indicating that for sufficiently largeL the averagekkl will approach a finite value: a fit
of the five-dimensional multiplicity data with a constant plus a simple linear correction to scaling reproduces
the data very well. Numerical simulations ford.6 and ford=4 are also presented.
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I. INTRODUCTION AND THEORY

We are interested in site percolation on a finite hypercubic
lattice ind dimensions, of linear sizeL. The number of span-
ning clusters whenL is of the order of the percolation cor-
relation lengthj away from the percolation thresholdpc was
discussed originally in Ref.[1]. The purpose of this paper is
to discuss the average number of spanning clusters,kkl, at
p=pc, whenj is infinite, and all the critical quantities behave
as powers ofL. As we discuss below, the number of spanning
clusters has been the topic of much discussion in the litera-
ture. For example, although intuitively one would think that
in two dimensions there exists only one spanning cluster, in
fact (for appropriate boundary conditions) there is a whole
distribution of the sizes of such clusters[2]. In addition, we
show below that ford,6 the average number of such clus-
ters is finite, in direct relation with the validity of the hyper-
scaling relations among critical exponents. Ford.6 hyper-
scaling is violated, dangerous irrelevant variables must be
introduced, and the result forkkl becomes ambiguous, de-
pending on the boundary conditions. In fact, the theory for
that case is yet incomplete, leaving an open challenge for
future research.

We start with a theoretical discussion. The percolation
“order parameter”Pspan is usually defined as the probability
that a site belongs toany spanning cluster(i.e., to the union
of all spanning clusters). For a finite sample,Pspan is related
to the cluster size distribution functionnssp,Ld (defined as
the average number per site of clusters containings sites) via
the sum rule[3]

Pspansp,Ld = p − o
s

snssp,Ld, s1d

where the sum overs excludes all clusters which span the
lattice. The exact details depend on the definition of
“spanning”—e.g. along how many directions should the
cluster connect opposite faces of the hypercube. However,
these details do not matter for the scaling arguments pre-
sented below.

For a finite lattice, the sum in Eq.(1) goes up tosmaxsLd,
which is of the same order as the average mass of a single
spanning cluster,ssLd. Since the total mass ofall spanning
clusters is given byLdPspan, this implies that the average
numberkkl of spanning clusters is given by

kkl ~ LdPspan/ssLd. s2d

This relation should hold at all dimensions. The proportion-
ality constant in Eq.(2) (which results, among other things,
from dividing averages rather than averaging the ratio and on
the detailed definition of “spanning” in a finite sample) may
depend on the boundary conditions and on other details.

One way to derivessLd is to use the pair connectivity
function,Gsrd. This function yields the probability that a site
at distancer from the origin is connected to the same cluster
as the origin. Assuming that the site at the origin belongs to
any spanning cluster, with probabilityPspan, the density pro-
file of the cluster is given byrsrd=Gsrd /Pspan [4,5]. Thus,
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ssLd ~ E
0

L

ddr Gsrd/Pspan= SsLd/Pspan, s3d

whereSsLd=e0
Lddr Gsrd is proportional to the mean cluster

size:

S~ o
s

s2nssp,Ld/o
s

sns.

(These two quantities are equal in the thermodynamic limit,
L→`.) Thus, we come to the fundamental relation

kkl ~ LdPspan
2 /SsLd. s4d

A naive finite-size scaling theory would predict that at
p=pc one hasPspan~L−b/n andSsLd~Lg/n [3]. Thus, one con-
cludes that

kkl ~ Ld−s2b+gd/n. s5d

For d,6, hyperscaling implies thatdn=2b+g, and there-
fore kkl is asymptotically independent ofL. In fact, the com-
bination of amplitudes which appears in Eq.(2) is universal,
depending only on the type of boundary conditions[6]. As
we discuss below, numerical estimates forkkl indeed ap-
proach a constant fordø4. However, data ford=5 require
further discussion. Although not a major purpose of this pa-
per, our discussion below should also serve as a warning and
as a guideline for future numerical simulations in such high
dimensions. In fact, some data remain ambiguous unless one
uses available theoretical information or unless one performs
simulations on much larger scales than presently possible.

At d=6, many power laws are modified by logarithmic
corrections. In fact[7],

Pspan~ L−2sln Ld11/21,

SsLd ~ L2sln Ld1/21. s6d

Using our basic result, Eq.(4), we thus find

kkl ~
L6Pspan

2

SsLd
~ ln L, d = 6. s7d

Further analysis shows that the coefficient of proportionality
here (and also the result forkkl for d,6) is a universal
number [6]. Corrections to the above result will involve
lnsln L+constd. Figure 1 shows that the data in six dimen-
sions, which were fitted by the square of lnL in Ref. [8], can
also be fitted to a simple logarithm plus a ln lnL correction
to scaling,kkl=A ln L+B ln ln L+¯ . The two data sets re-
fer, respectively, to free boundary conditions(FBC’s) and to
mixed boundaries(MBC’s)—i.e., helical ind−2 directions
and free in the remaining two. In both cases we obtain a
good fit for L.10, so that the trend appears independent of
boundary conditions, as one would expect. The coefficients
of the fits are A=11.9, B=−17 (MBC) and A=2.38,
B=−4.33(FBC).

For d.6, hyperscaling is broken, and one has the mean-
field exponentsb=g=2n=1. A simple scaling in whichj is
replaced by L [1] would give Pspan~L−2, SsLd~L2,
ssLd~L4, and

kkl ~ Ld−6. s8d

This simple result, which already appeared in Ref.[3], has
also been proved by Aizenman[2] for the case of bulk
boundary conditions, where a spanning cluster connects two
opposite faces of the box of sizeL under the condition that
sites in the box can also be connected by paths outside the
box.

However, other forms of scaling may be possible, which
may depend on the boundary conditions. We will discuss the
different scaling approaches within the framework of the
renormalization group(RG) theory (e.g., Ref. [7]). This
theory is conveniently discussed using the “free energy”F,
equal to the generating function of the cluster distribution
function,

Fsp,h,Ld = o
s

nssp,Lde−sh, s9d

which is related to the free energy of theq-state Potts model
for q→1. ThenPspan and SsLd are the first and second de-
rivatives of the singular part ofF with respect toh. After ,
RG iterations, this singular part becomes

fsp,h,w,Ld = e−d,f„ts,d,hs,d,ws,d,L/e,
…, s10d

wheret=p−pc. Here,w represents the probability for having
a threefold vertex at a site on a cluster. Although irrelevant in
the RG sense, this variable must be included in the analysis,
since the “free energy” may depend on it in a singular way,
causing the breakdown of hyperscaling. This is whyw is
called “a dangerous irrelevant variable.” For a finite sample
close topc, L!j, iteration until e,=L yields theL depen-
dence of the quantities discussed above.

For d,6, ws,d approaches a finite fixed-point value, and
one ends up with hyperscaling and with the conclusion thatk
approaches a finite constant. Ford.6, one ends up with

fst,h,w,Ld = L−dfstL2,hLd/2+1,wL3−d/2,1d. s11d

However, as stated above, noww turns out to be a “danger-
ous irrelevant variable.” One way to see this is to consider
the infinite sample. After eliminating the fluctuations,f is
given by the minimum of the Landau free energy,

FIG. 1. Average numberkkl of simultaneously spanning clusters
at the six-dimensional percolation threshold, for FBC’s(p) and
MBC’s (1) (see text). The lines are fits tokkl=A lnsLd+B lnslnLd;
we used the data of Ref.[8] plus additional simulations for smallL
with the number of samples variable from 1000 to 50 000.
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f = min
P

ftP2 + wP3 − hPg, s12d

while the order parameterPspan is equal to the value ofP
which minimizes this free energy. ReplacingP by Qw−1+x/3,
with an arbitrary exponentx, it is easy to see thatf obeys the
scaling relation

fst,h,wd = w−2+xfstw−x/3,hw1−2x/3,1d. s13d

In particular, the minimization with respect toQ now yields
the equation 3Q2+2Qtw−x/3−hw1−2x/3=0, leading to the scal-
ing form

fst,h,wd = w−2t3gshw/t2d, s14d

which is completely independent of the arbitrary exponentx.
This ambiguity stems from the fact that the Landau free en-
ergy is calculated for an infinite system.

Unlike the above result for the infinite system, the expo-
nentx does persist forfinite samples. In fact, the theoretical
predictions forkkl depend crucially onx, and this remains an
open challenge for future research. In this case, combining
the scaling withL from Eq. (11) with Eq. (13), we end up
with

fst,h,w,Ld = wx−2L−6+3x−dx/2

3 fstw−x/3L2−x+dx/6,hw1−2x/3L4−2x+dx/3,1,1d,

s15d

and the value ofx must follow from the boundary condition,
which breaks the scale invariance reflected in Eq.(14). Tak-
ing derivatives with respect toh and settingt=0, this implies
that

Pspan~ L−2+x−dx/6,

S~ L2−x+dx/6,

ssLd ~ L4−2x+dx/3. s16d

The naive scaling result of Eq.(8) is obtained with the
simple choicex=0.

Figure 2 compares Eq.(8) with the numerically estimated
effective exponents. Clearly, there exist some discrepancies

between theory and simulations. However, these discrepan-
cies do not worry us much since the lattices ford.6 are
very small in their linear dimensionL. This is confirmed by
the fact that, ford.6, the results for the exponents strongly
depend on the type of boundary conditions one chooses.
Also, our attempts to add corrections to scaling to the leading
term of the fit ansatz did not improve the situation. At
present, the numerical results cannot clearly confirm that
x=0, as would be required if Aizenman’s[2] result also ap-
plies for our boundary conditions(note that his proof works
under somewhat different conditions). Thus, the value ofx
remains to be determined in the future.

A second possibly relevant case isx=2. In this case,f has
the form

fst,h,w,Ld = L−dFsw−2/3tLd/3,hw−1/3L2d/3,1,1d, s17d

yielding D=2d/3 andPspan andS given by

Pspan= L−d/3f1sw−2/3tLd/3d, s18d

S= Ld/3f2sw−2/3tLd/3d. s19d

In the limits t→0, L→`, these equations behave as

Pspan~ S−1 ~ t ~ j−2, L = `, s20d

Pspan~ S−1 ~ L−d/3, kkl ~ const, t = 0, s21d

and

Pspan~ S−1 ~ L−y, kkl ~ Ld−3y,

tLy = const, 0, y ø d/3. s22d

(Remember that these equations only apply ford.6.) The
scaling behavior of Eqs.(20)–(22) for y=2 is analogous to
that found by Chen and Dohm[9] for the f4 Ising model
with periodic boundary conditions and has recently been
used to find an upper bound for the number of spanning
clusters[8]. As seen from Fig. 2, our data fort=0 do not
seem to agree with the prediction thatkkl approaches a finite
constant. However, our samples are small, and the situation
for d.6 requires more studies. Very recent simulations show
that Pspan differs appreciably from the relative size of the
largest cluster[10], but that is not enough to conclude that
the spanning cluster multiplicity diverges ford.6. Thus, the

FIG. 2. Effective exponents for the scaling withL of the span-
ning cluster multiplicity(from Ref.[8]), as a function of the spatial
dimensiond. The dashed line represents the theoretical prediction
from Eq. (8).

FIG. 3. Numerical verification of our relation, Eq.(4), for five-
dimensional(5D) percolation with MBC’s.
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true behavior ofkkl for d.6 remains an open issue. We hope
that the present paper will stimulate both numerical and the-
oretical discussions of this question.

II. RESULTS OF THE SIMULATIONS

We now review in detail our numerical simulations. The
first numerical studies on this topic were performed by de
Arcangelis[11].

An important issue concerns the validity of our Eq.(4),
which is a general result that establishes a link between the
order parameterPspan, the mean cluster sizeS, and the span-
ning cluster multiplicitykkl. Figures 3 and 4 show numerical
tests of this relation. We analyzed one case below the upper
critical dimensiondc=6—i.e., 5D with MBC’s—and one
case abovedc—i.e., 7D with FBC’s. In both cases we have
calculated the ratioLdPspan

2 / sSkkld. From our equation(4) we
expect that forL large this ratio converges to a constant, and
both our figures confirm this expectation. We stress that theS
that we calculate through our simulations differs from the
standard definition ofS=oss

2nssp,Ld /ossns by the absence
of the denominator. The latter is smaller than 1, as it is the
density of occupied sites which belongs to finite clusters, so
the real value of the ratioLdPspan

2 / sSkkld would be smaller

than the one we show in Figs. 3 and 4. On the other hand, the
functional dependence onL of the ratio is the same in both
cases.

Let us now concentrate on the trend of the multiplicity
when the linear dimensionL of the lattice varies. In less than
five dimensions, Ref.[8] found an asymptotically constant
number of spanning clusters for both theory and simulation.
Thus the real problem is five dimensions, which we discuss
now.

Figure 5 shows new data forL5 sites, extending up to
L=201, the largest five-dimensional system known to us
from direct simulations(1765 was simulated in Ising models
[12]). They are still compatible with the number of spanning
clusters increasing as lnL. These data use MBC’s, but simi-
lar proportionalities to lnL were found also with free and
periodic boundary conditions(PBC’s, which means helical
boundaries ind−1 directions), which are illustrated in Fig. 6.
By looking at the data corresponding to periodic boundaries,
however, it seems that the curve smoothly bends towards the
end, which might indicate the beginning of a crossover.

For comparison, Fig. 7 shows four-dimensional simula-
tions with MBC’s. There we see for smallLø12 a logarith-
mic increase, followed by a crossover region extending over
one decade inL and ending finally in the theoretically pre-

FIG. 4. As Fig. 3, but for 7D percolation with FBC’s.

FIG. 5. Five-dimensional problem, MBC’s. The rightmost error
bar for L=201 comes from 10 samples, the two smaller error bars
shown from 100 samples. Most of the data use 1000 samples with
error bars too small to be shown. There is no evidence for a plateau;
nevertheless, the trend of the data is beautifully reproduced just by
adding a simple nonlogarithmic scaling correction(dashed line in
the plot).

FIG. 6. Five-dimensional data of the spanning cluster multiplic-
ity at threshold for FBC’s(1) and PBC’s(p). One still finds an
increase withL, although for PBC’s it seems that the data curve
starts bending at highL. The number of samples goes from 3000 to
50 000 for FBC’s and from 10 000 to 50 000 for PBC’s.

FIG. 7. Four-dimensional solution, MBC’s. The spanning cluster
multiplicity increases in a wide range ofL, but attains finally a
plateau forL.100. The dashed curve is the fit with the simple
correction to scaling ansatzaL/ sL+bd. For eachL we took mostly
1000 samples.
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dicted plateau nearL=200. Further simulations with PBC’s
(not shown) confirm this trend. These four-dimensional re-
sults are a nice example for the need of large lattices in
simulations: only aboveL=100 is the theory confirmed.
Comparing Figs. 5 and 7 we may hope that also in five
dimensions a crossover would be seen towards a plateau, if
we could simulate larger lattices than present world records
[13].

There is a way, however, to clarify the issue. Instead of
looking merely at the average numberkkl of spanning clus-
ters (as in all of the above discussion), we can analyze the
histogramPskd of that number. Its tail for largek was already
shown to be consistent with theory[14]: −ln Psk→`d
~kd/sd−1d for 2ødø7. If kkl were size independent, on a
lattice of linear dimensionL we would also expectPsk,Ld
=Pskd; i.e., the histogram is as well size independent. Finite-
size scaling for largeL would nevertheless allow correction
factors likeXsLd=1+const/L, so that the histogram is indeed
a functionP(kXsLd). On the other hand,P(kXsLd) is normal-
ized to someL-independent numberC (we chose here
C=1000), and therefore

o
k=0

`

P„kXsLd… = C. s23d

If we approximate the sum with the integral overk, we can
perform the change of variablej =kXsLd, so to get

1

XsLdoj=0

`

Ps jd = C. s24d

Equation(24) cannot be right as it stands, because the left-
hand side is a function ofL, while the right-hand side is not.
That means that the histogramPsk,Ld is not a scaling func-
tion of the variable j =kXsLd, but that Psk,Ld
=XsLdP8(kXsLd), whereP8 is now [15] a scaling function of
j . Let us check what happens to the average multiplicitykkl
if we assume thatPsk,Ld has the above-derived form:

kkl =
ok=0

`
kXsLdP8„kXsLd…

ok=0

`
XsLdP8„kXsLd…

=
1

CXsLdoj=0

`

jP8s jd, s25d

where we again made the substitutionj =kXsLd in the sum
over k. The sum in Eq.(25) is independent ofL, and we
finally obtain

kkl ~
1

XsLd
, s26d

so that the wholeL dependence of the average multiplicity is
contained in the correction factorXsLd.

In this way, we have now the chance to make a cross
check on our, data. Ifkkl is indeed size independent for
d,6, we should be able to find a simple nonlogarithmic
correction factorXsLd=1+const/L, such thatkkl~1/XsLd
and consistentlyPsk,Ld /XsLd is a scaling function of the
variable j =kXsLd. We remark that only eventual discrepan-
cies of the rescaled histograms at largek can lead to infi-

nitely many spanning clusters in the limitL→`: if, for all L,
there were a finitek* beyond which the histograms collapse,
kkl would necessarily approach a constant for largeL,
modulo finite-size corrections.

We tried then to fit the multiplicity curves in four and five
dimensions with the simple two-parameter ansatzaL/
sL+bd, to see whether we could reproduce the observed
trends. As a first trial we took the four-dimensional data of
Fig. 7 and fitted several portions of the increasing part of the
curve, before the plateau. All our fits are quite good; besides,
starting from the range[2:60], the fit is stable; i.e., we obtain
the same values for the parametersa andb as for the fit on
the full curve, within errors. This is quite interesting, because
it allows us to predict quite precisely where saturation takes
place, even if one analyzes values ofL which lie well below
the beginning of the plateau. The best fit curve, for which
a=0.78 andb=4.2, is plotted in Fig. 7.

As a nice confirmation of this result, we show in Fig. 8
the corresponding histogramsPsk,Ld, where we use the
value b=4.2 derived above for the scaling correction. We
chose again on purpose only values ofL before the plateau of
the average multiplicity. The figure gives a nice data col-
lapse, as we expected.

We repeated the analysis for the five-dimensional data,
starting from the puzzling curve of Fig. 5. Here we find that
the fits are very good and stable starting from the very be-
ginning of the curve: the fit parametersa andb are basically
fixed already in the range[2:20]; the best fit(dashed line in
the figure) was obtained including all data points with sig-
nificant statistics—i.e., for 2øLø91, we obtaina=3.12s6d,
b=17.5s7d. As one can see in Fig. 5, our simple ansatz
(dashed line) describes very well the observed behavior of
the data. We notice that on the logarithmic scale forL our
simple scaling curve has an inflection point, exactly as the
data. This inflection can be interpreted as a signal of a pos-
sible crossover from an initial logarithmic increase of the
multiplicity to a successive convergence to a plateau; we
now see that it is instead a natural feature of our scaling

FIG. 8. Four-dimensional histogram, MBC’s. Occurrence
Psk,Ld of samples withk spanning clusters each, versusk, with the
finite-size correction factor 1+4.2/L derived from the fit of the
average multiplicity. The data sets have a variable number of
samples, mostly 50 000; we normalized them all to 1000 iterations.
The nice scaling is consistent with the size independence of the
average multiplicity. The lattices we have taken are 204, 304, 404,
504, 704, and 854.
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ansatz. Notice that the correction term is more important
than in four dimensions(17.5 vs 4.2). That means that the
data converge much more slowly to the plateau and explains
why we could not see a saturation even atL=201 (although
the argument can be reversed). Indeed, for a givenL, the
ratio r of the multiplicity to the asymptotic plateau is
r =L / sL+bd. In 4D, r =96% for L=100 and r =98% for
L=200; in 5D, one would obtain 85% and 92%, respectively.
In order to “see” the plateau as we do in four dimensions, we
would need to go toL,800. To check the consistency of the
picture in 5D we studied the scaling of the histograms
Psk,Ld, with the correction constantb=17.5 that we deter-
mined above. The result is illustrated in Fig. 9; the scaling is
quite good, except eventually fork=0 (but scaling laws sel-
dom hold for small integers) and at the very end of the tail,
where the statistics is too low and there are relevant fluctua-
tions of the data points.

Finally, we analyzed the two other data sets in five
dimensions—i.e., the ones relative to FBC’s and PBC’s. In
both cases we found that our picture works: we could find a
scaling correctionXsLd=1+const/L such that both the aver-
age multiplicity and the histograms show a clean scaling.
The histograms are shown in Figs. 10 and 11; the scaling is
again very good fork.0, with some fluctuations at the end
of the tail which are likely due to the low statistics of those
points.

We also checked for five dimensions whether other per-
colation quantities behave unusually and found that they do
not. The size of the largest cluster at the percolation thresh-
old varies asymptotically asLd−b/n and the “mean” cluster
size asLg/n, whereb /n.1.46, g /n.2.07 are expected[3]
in five dimensions. We found that corrections to scaling play
an important role in this range ofL (from 10 to 80); all our
fitting curves include a correction term, for which we fixed
the value of the exponentv to the estimate 0.53 given in Ref.
[16]. Taking into account this correction, the finite-size scal-
ing fits are remarkable for all percolation variables if we use
the PBC data, for which we getb /n=1.45s2d and
g /n=2.08s2d. For MBC’s the fits are also very good, but a
bit worse as far as thex2 and the values of the exponents are
concerned[b /n=1.45s2d, g /n=2.10s2d]; for the FBC’s the
fits are not so good and the values of the exponents not in
agreement with expectations, though quite close. Also series
expansions[16], which are independent of any lattice
size, gave in five dimensions the usual exponents in agree-
ment with expectations, without indications of particular
difficulties.

III. CONCLUSIONS

In summary, we have derived the scaling behavior at
threshold of the average numberkkl of spanning clusters
with the linear dimensionL of the lattice, for any space di-
mensiond. Below the upper critical dimensiondc=6, kkl
should approach a constant whenL→`, for d=6 it should
increase as lnL, and ford.6 it could increase asLd−6, but
could also approach a constant(depending on boundary con-
ditions and yet unknown theoretical details). While the latter
conclusions might seem just a confirmation of previous re-
sults on the topic, our work highlights two new important
issues:(i) the possibility of other scaling behaviors ofkkl
above the upper critical dimension, which possibly depend
on the boundary conditions and(ii ) the relevance of correc-
tions to scaling, which may affect the scaling behaviors up to
two-three orders of magnitude inL.

Our numerical investigations confirm that the multiplicity
indeed converges to a constant ford,6. For the cased=5,
where we do not see a plateau even for the largestL we have

FIG. 9. Same as Fig. 8, for five-dimensional data with MBC’s.
One obtains again a very good scaling of the spanning cluster mul-
tiplicity distributions fork.0 by introducing the simple correction
1+17.5/L. The lattices are 305, 405, 505, 605, 705, 805, and 915. The
number of samples goes from 1000 to 50 000.

FIG. 10. Same as Fig. 9, but with FBC’s. The correction is
1+4/L, the lattices are 205, 305, 405, 505, 605, and 705. The number
of samples goes from 3000 to 50 000.

FIG. 11. Same as Fig. 9, but with PBC. The scaling is remark-
able, probably due to the better statistics; the necessary correction is
1+20/L. The lattices are 305, 405, 505, 605, 705, and 805. The
number of samples goes from 8000 to 50 000.
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taken, a simple linear correction to scaling is able to repro-
duce the observed data pattern. In six dimensions the results
can be made consistent with theory by adding a logarithmic
finite-size correction; in more than six dimensions, both the
data on the multiplicityk and those on the order parameter
Pspanand the mean cluster sizeS lead to very different values
of the finite-size scaling exponents for different sets of
boundary conditions, and we are not able to derive reliable
conclusions. So if our numerical evidence belowdc is con-
clusive, to close the issue abovedc simulations at much
largerL seem to be necessary.
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